
http://www.elsevier.com/locate/jat
Journal of Approximation Theory 128 (2004) 42–52

Entropy of convex hulls—some Lorentz
norm results

Ingo Steinwart�

Los Alamos National Laboratory, Computer and Computational Sciences Division, Modeling, Algorithms,

and Informatics Group, CCS-3, Machine Learning and Pattern Recognition, Mail Stop B256, Los Alamos,

NM 87545, USA

Received 19 June 2003; accepted in revised form 1 April 2004

Communicated by P. Oswald

Abstract

Let A be a subset of a type p Banach space E; 1opp2; such that its entropy numbers satisfy
ðenðAÞÞnAcq;s for some q; sAð0;NÞ: We show ðenðacoAÞÞnAcr;s for the dyadic entropy

numbers of the absolutely convex hull acoA of A; where r is defined by 1=r ¼ 1=p0 þ 1=q:
Furthermore, we show for slowly decreasing entropy numbers that ðenðAÞÞnAcq;s implies

ðenðacoAÞÞnAcp0;s for all 0osoN and q defined by 1=q ¼ 1=p0 þ 1=s:
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1. Introduction and results

In the following, E always denotes a Banach space and BE its closed unit ball.
Given a bounded subset ACE; we define the entropy numbers of A to be

enðAÞ :¼ inf e40 : (x1;y; xnAA such that AC
[n
i¼1

ðxi þ eBEÞ
( )

; nAN:

Furthermore, the dyadic entropy numbers are enðAÞ :¼ e2n�1ðAÞ; nX1: It is common
knowledge that if A is precompact, so is its absolutely convex hull acoA: A problem
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which was first considered by Dudley [6] is to quantify this implication in terms of
entropy numbers. In recent years this question has intensively been treated in
different settings (cf. e.g. [1,3,5,7–9,13–15]). Furthermore, the ‘‘dual case’’ which
leads to similar results has been considered in [2,4].
In order to state our results we have to recall some definitions: a Banach space E is

said to be of type p; 1ppp2; if there is a constant C40 such that for all
x1;y; xnAE we have the estimateZ 1

0

Xn

i¼1
xiriðtÞ

�����
�����

�����
����� dtpC

Xn

i¼1
jjxijjp

 !1=p

;

where ðrnÞ shall denote the Rademacher functions, i.e. rnðtÞ :¼ signðsinð2nptÞÞ: The
type p constant tpðEÞ is the smallest constant C satisfying the above inequality. If E

is a Banach space of type p and Z1;y;Zn are independent E-valued random
variables with finite pth moment the inequality

E
Xn

i¼1
ðZi � EZiÞ

�����
�����

�����
�����p4tpðEÞ

Xn

i¼1
EjjZijjp

 !1=p

ð1Þ

holds (cf. [10]).
Furthermore, let x ¼ ðxiÞ be a sequence of real numbers. By ðsnðxÞÞ we denote the

non-increasing rearrangement of x; that is snðxÞ :¼ inffcX0 : cardfi : jxijXcgong:
For 0opoN and 0oqpN the Lorentz sequence space cp;q is then defined by

cp;q :¼ fx : ðn1=p�1=qsnðxÞÞAcqg;

which is equipped with the quasi-norm jjxjjp;q :¼ jjðn1=p�1=qsnðxÞÞjjcq
: For basic

properties of these spaces we refer to [11]. As usual, we denote the conjugate of
pA½1;N� by p0; i.e. 1=p0 :¼ 1� 1=p: For two positive sequences ðanÞ and ðbnÞ we write
an%bn if there exists a constant c40 such that anpcbn for all nAN: Moreover, we
write anBbn if both an%bn and bn%an:
Given a Banach space of type p; 1opp2; and a precompact subset A of E it was

shown in [3] that

ðenðAÞÞnAcq;N ) ðenðacoAÞÞnAcr;N ð2Þ

holds for all qAð0;NÞ if r is defined by 1=r ¼ 1=p0 þ 1=q: For Hilbert spaces, this
implication was also shown in [1,15]. In [13,14] implication (2) was refined by
establishing universal inequalities which imply

enðAÞ%n�1=q logðn þ 1Þg ) enðacoAÞ%n�1=q�1=p0 logðn þ 1Þg ð3Þ

for all qAð0;NÞ and all gAR: Furthermore, it was shown in [14] that this is
asymptotical optimal for certain sets ACE whenever E has no type larger than p:
Besides two inequalities (cf. [3]) for subsets A of Hilbert spaces and logarithmically
decreasing ðenðAÞÞ no sharp results on summability properties of ðenðacoAÞÞ in terms
of ðenðAÞÞ are known so far. In particular, it is an open question whether (2) also
holds for secondary indexes saN: Before we positively answer this question we
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establish a universal inequality which estimates the entropy numbers of acoA in
terms of the entropy numbers of A:

Theorem 1.1. Let E be a Banach space of type pAð1; 2� and qAð0;NÞ: Then there

exists a constant cq40 such that for all nX2; all integers a1oyoan and all bounded

symmetric subsets ACE we have

e2mðacoAÞp cqm�1=q�1=p0 sup
ipminfm1þq=p0 ;a1g

i1=qeiðAÞ

þ 23tpðEÞ2�n=p0
Xn

k¼1
2k=p0

Xn

i¼k

eai
ðAÞ

 !p !1=p

;

where m :¼ I2nþ2Pn
k¼2 2

�k log2ð2
kþ2ak

2n þ 3Þmþ 2:

Using Theorem 1.1 one can prove various known results on entropy numbers of
convex hulls in type p spaces (cf. the examples below). Moreover, Theorem 1.1 leads
to our main results:

Theorem 1.2. Let E be a Banach space of type pAð1; 2�: For qAð0;NÞ define r by

1=r ¼ 1=p0 þ 1=q: Then for all bounded ACE and all sAð0;N� we have

ðenðAÞÞnAcq;s ) ðenðacoAÞÞnAcr;s:

Since (3) is asymptotical optimal whenever E has no type larger than p it is
obvious that Theorem 1.2 cannot be improved.
The following theorem provides a similar implication for subsets A with slowly

decreasing entropy numbers.

Theorem 1.3. Let E be a Banach space of type pAð1; 2� and sAð0;NÞ: Define q by

1=q ¼ 1=p0 þ 1=s: Then for all bounded subsets ACE we have

ðenðAÞÞnAcq;s ) ðenðacoAÞÞnAcp0;s:

Again, the estimate of Theorem 1.3 cannot be improved if the type of E is exactly p

(cf. Example 1.5).
As in [3] we say that a subset A of a Hilbert space H satisfies Dudley’s entropy

condition if ðenðAÞÞnAc2;1: Recall, that the results of [3] (cf. Example 1.5) ensure that
acoA satisfies Dudley’s entropy condition provided that ðenðAÞÞnAcr;N for some r

with 0oro2
3
: By Theorem 1.3 this condition can be replaced by ðenðAÞÞnAc2=3;1: As

mentioned above the latter is optimal.
Finally, we provide some examples which demonstrate how recently proved results

can be shown using Theorem 1.1. Recall, that all of these estimates are
asymptotically optimal whenever E has no type larger than p (cf. [14]).
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Example 1.4 (Carl et al. [3], Steinwart [13]). Let E be a Banach space of type p;

1opp2; q40 and gAR: Fix an integer a with a4q=p0 and define ak :¼ 2nþak: Then
Theorem 1.1 yields implication (3) for all bounded subsets ACE:

Example 1.5 (Carl et al. [3], Steinwart [13]). Let E be a Banach space of type p;
1opp2; ACE be a bounded subset, qAð0; p0Þ and gAR: Fix a with q=p0oao1 and
define ak :¼ I2n2ðk�1Þam: Then Theorem 1.1 yields

enðAÞ%ðlogðn þ 1ÞÞ�1=qðlogðlogðn þ 2ÞÞÞg

) enðacoAÞ%n�1=p0 logðn þ 1Þ1=p0�1=qðlogðlogðn þ 2ÞÞÞg:

Example 1.6 (Gao [7], Creutzig and Steinwart [5]). Let E be a Banach space of type

p; 1opp2; and ACE be a bounded subset. We define ak :¼ 2n2k�1
or ak :¼ 22k

: Then
in both cases Theorem 1.1 yields

enðAÞ%ðlogðn þ 1ÞÞ�1=p0 ) enðacoAÞ%n�1=p0 logðn þ 1Þ:

Example 1.7 (Carl et al. [3], Steinwart [13]). Let E be a Banach space of type p;
1opp2; ACE be a bounded subset and q with p0oqoN: We fix an a with
1oaoq=p0 and define ak :¼ I22

ak

m: Then the theorem yields

enðAÞ%ðlogðn þ 1ÞÞ�1=q ) enðacoAÞ%n�1=q:

2. Proof of the results

We need the following result which was shown in [13,14].

Theorem 2.1. Let E be a Banach space of type p; 1opp2; and qAð0;NÞ: Then there

exists a constant cq40 such that for all bounded symmetric subsets ACE with

cardðAÞpn and all kX1 we have

ekðacoAÞpcqk�1=q�1=p0 sup
ipminfk1þq=p0 ;ng

i1=qeiðAÞ:

In order to prove Theorem 1.1 we also need a refinement of the decomposition
techniques of [3,13] which is stated in the following lemma:

Lemma 2.2. Let ACE; nAN and a1;y; an be integers. Then there exist a sequence

P1;y;Pn of partitions of A and elements x
ðkÞ
i AA; i ¼ 1;y; jPkj; k ¼ 1;y; n, such
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that Pk is finer than Pk�1 for all k ¼ 2;yn and

jPkjpak for all k ¼ 1;y; n;

Pk
i Cx

ðkÞ
i þ 2

Xn

l¼k

eal
ðAÞ

 !
BE for all Pk

i APk:

Proof. The construction is based on a kind of backwards induction. By the

definition of ean
ðAÞ there is a minimal 2ean

ðAÞ-net B ¼ fx
ðnÞ
1 ;y; x

ðnÞ
m gCA of A with

m :¼ jBjpan: Let Pn ¼ fPn
1;y;Pn

mg be a partition with Pn
i Cx

ðnÞ
i þ 2ean

ðAÞBE for all

i ¼ 1;y;m:
Now, let us suppose that we already have constructed Pk and the corresponding

elements x
ðkÞ
i : In particular, we have

Pk
i Cx

ðkÞ
i þ 2

Xn

l¼k

eal
ðAÞ

 !
BE :

By the definition of eak�1ðAÞ there is a minimal 2eak�1ðAÞ-net B ¼
fx

ðk�1Þ
1 ;y; x

ðk�1Þ
m gCA of A with cardinality m :¼ jBjpak�1: Let A1;y;Am be a

partition of A with AiCx
ðk�1Þ
i þ 2eak�1ðAÞBE : For 1pipm we then define

Pk�1
i :¼

[
j with

x
ðkÞ
j

AAi

Pk
j

if there is an index j with x
ðkÞ
j AAi:We denote the collection of these Pk�1

i ’s by Pk�1:

Clearly, Pk�1 is a partition of A with jPk�1jpmpak�1 and Pk is finer than Pk�1: To

check the last assertion we chose an arbitrary xAPk�1
i : Then there is an index j with

x
ðkÞ
j AAi and xAPk

j : Since jjx
ðkÞ
j � x

ðk�1Þ
i jjp2eak�1ðAÞ we obtain

jjx � x
ðk�1Þ
i jjp jjx � x

ðkÞ
j jj þ jjxðkÞ

j � x
ðk�1Þ
i jj

p 2
Xn

l¼k

eal
ðAÞ þ 2eak�1ðAÞ ¼ 2

Xn

l¼k�1
eal
ðAÞ: &

Proof of Theorem 1.1. Let P1;y;Pn be a sequence of partitions according to

Lemma 2.2. Using backwards induction, we find elements y
ðkÞ
j APk

j ; k ¼ 1;y; n and

j ¼ 1;y; jPkj; with

y
ðnÞ
j ¼ x

ðnÞ
j for j ¼ 1;y; jPnj

and

y
ðkÞ
j ¼ y

ðkþ1Þ
i for k ¼ 1;y; n � 1; j ¼ 1;y; jPkj

and an index i with Pkþ1
i CPk

j :
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Now, for 1pkpn and xAA we define

tkðxÞ :¼ y
ðkÞ
j

if xAPk
j : Then, our construction guarantees that the cardinality of

Dk :¼ ftkðxÞ � tk�1ðxÞ : xAAg; k ¼ 2;y; n

can be estimated by jDkjpjPkjpak: Of course, for D1 :¼ ft1ðxÞ : xAAg this is also
true. Moreover, for all xAA and every k ¼ 2;y; n we have tkðxÞ; tk�1ðxÞAPk�1

j for a

suitable index j: Hence, we find

jjDkjjp4
Xn

i¼k�1
eai
ðAÞ ð4Þ

by the definition of Pk�1: Here, we write jjDkjj :¼ supxADk
jjxjj for short. After

symmetrizing D0
k :¼ Dk,ð�DkÞ,f0g we define Ck :¼ acoDk ¼ coD0

k and En :¼Pn
k¼2 Ck: Our construction guarantees acofx

ðnÞ
1 ;y; x

ðnÞ
jPnjgCC1 þ En and hence C1 þ

En is a 2ean
ðAÞ-net of acoA: In particular, we have

e2mðacoAÞpemðC1Þ þ emðEnÞ þ 2ean
ðAÞ: ð5Þ

Obviously, we obtain

2ean
ðAÞp23tpðEÞ2�n=p0 ðð2n=p0ean

ðAÞÞpÞ1=p: ð6Þ

Moreover, D1CA; jD1jpa1 and Theorem 2.1 imply

emðC1Þpcqm�1=q�1=p0 sup
ipminfm1þq=p0 ;a1g

i1=qeiðAÞ: ð7Þ

Now, we estimate emðEnÞ using an argument of [7] (cf. also [5]) which originally goes
back to Maurey (cf. [12]): we write D0

k ¼ fx
ðkÞ
1 ;y; x

ðkÞ
dk
g,f0g for k ¼ 2;y; n: Then

every zkACk can be represented by

zk ¼
Xdk

i¼1
a
ðkÞ
i x

ðkÞ
i where a

ðkÞ
i X0 and

Xdk

i¼1
a
ðkÞ
i p1:

Let Zk be a random vector with range D0
k and

PðZk ¼ x
ðkÞ
i Þ ¼ a

ðkÞ
i ; i ¼ 1;y; x

ðkÞ
dk
;

PðZk ¼ 0Þ ¼ 1�
Xdk

i¼1
a
ðkÞ
i :

It is trivial to obtain EZk ¼ zk: For brevity’s sake we write mk :¼ 2n�k for k ¼
2;y; n: Now, we take independent random vectors Z2;1;y;Z2;m1 ;y;Zn;1;y;Zn;mn

such that Zk;i is a copy of Zk for all k ¼ 2;y; n and i ¼ 1;y;mk:With Yk;i :¼ 1
mk

Zk;i
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and inequality (1) we then obtain

E
Xn

k¼2
zk �

Xn

k¼2

1

mk

Xmk

i¼1
Zk;i

�����
�����

�����
����� ¼ E

Xn

k¼2

Xmk

i¼1
ðEYk;i � Yk;iÞ

�����
�����

�����
�����

p 4 tpðEÞ
Xn

k¼2

Xmk

i¼1
EjjYk;ijjp

 !1=p

p 4 tpðEÞ
Xn

k¼2
ðm�1=p0

k jjDk
0jjÞp

 !1=p

p 16 tpðEÞ2�n=p0
Xn

k¼2
2k=p0

Xn

i¼k�1
eai
ðAÞ

 !p !1=p

p 23 tpðEÞ2�n=p0
Xn�1
k¼1

2k=p0
Xn

i¼k

eai
ðAÞ

 !p !1=p

¼: e0:

Because the expectation is less than e0; there is a realization of the Zk;i for which the

inequality also holds. In particular, the set

X :¼
Xn

k¼2

1

mk

Xmk

i¼1
dk;i : dk;iAD0

k

( )

of all possible realizations of random sums
Pn

k¼1
1

mk

Pmk

i¼1 Zk;i; where Zk;iAD0
k are

arbitrary random vectors, form a e0-net of En: With Stirling’s formula, we find

log2jX jp
Xn

k¼2
log2

jD0
kj þ mk � 1

mk


 �

p 3
Xn

k¼2
mk log2

jD0
kj

mk

þ 3

 �

p 2nþ2
Xn

k¼2
2�k log2

2kþ2ak

2n
þ 3


 �
:

Therefore, we obtain

emðEnÞpejX jðEnÞp23 tpðEÞ2�n=p0
Xn�1
k¼1

2k=p0
Xn

i¼k

eai
ðAÞ

 !p !1=p

;

which together with (5), (6) and (7) completes the proof. &

Proof of Theorem 1.2. Obviously, we may assume without loss of generality that
A is symmetric. Furthermore, we only have to show the assertion for soN:

Let us fix an integer a with a42q=p0: We define ak :¼ 2nþak for k ¼ 1;y; n:
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Then we obtain

m ¼ 2nþ2
Xn

k¼2
2�k log2

2kþ2ak

2n
þ 3


 �$ %
þ 2

¼ 2nþ2
Xn

k¼2
2�k log2ð2ðaþ1Þkþ2 þ 3Þ

$ %
þ 2

p 2nþ2
Xn

k¼2
2�kðða þ 1Þk þ 3Þ þ 2

p c12
n

for a suitable constant c140 independent of n: Analogously, we find a constant
c0140 such that mXc012

n: Furthermore, we have

Xn

k¼1
2k=p0

Xn

i¼k

eai
ðAÞ

 !p !1=p

p
Xn

k¼1
2k=p0

Xn

i¼k

eai
ðAÞ

¼
Xn

i¼1
eai
ðAÞ

Xi

k¼1
2k=p0

p c2
Xn

i¼1
2i=p0enþ1þaiðAÞ

for a constant c240 only depending on p0: Therefore, Theorem 1.1 yields

e2c12nðacoAÞpc32
�ð1=p0þ1=tÞn sup

ip2n

i1=teiðAÞ þ c42
�n=p0

Xn

i¼1
2i=p0enþ1þaiðAÞ ð8Þ

for all nX2; all t40 and constants c3; c440 independent of n and A: Since the

assertion is equivalent to ð2n=p0þn=qe2c12nðacoAÞÞnAcs it suffices to show

2n=q�n=t sup
kp2n

k1=tekðAÞ

 �

n

A cs; ð9Þ

2n=q
Xn

i¼1
2i=p0enþ1þaiðAÞ

 !
n

A cs ð10Þ

for a suitable t40: Let us fix a t40 with toq: Then ðekðAÞÞkAcq;s implies

1

n

Xn

k¼1
et

kðAÞ
 !1=t

0
@

1
A

n

A cq;s: ð11Þ

Since n�1=t supkpn k1=tekðAÞpð1
n

Pn
k¼1 e

t
kðAÞÞ1=t for all nX1 relation (11) implies

ðn�1=t supkpn k1=tekðAÞÞnAcq;s: Since, the latter sequence is decreasing this is

equivalent to (9). Now, let us treat (10): If s41 we define b :¼ 2s=p0 and t :¼
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1=ðs � 1Þ: Then, we observe
Xn

i¼1
2i=p0enþ1þaiðAÞ

 !s

¼
Xn

i¼1
ð2is=p0�ib2ibes

nþ1þaiðAÞÞ1=s

 !s

p
Xn

i¼1
ð2is=p0�ibÞt

 !1=tXn

i¼1
2ibes

nþ1þaiðAÞ

p c5
Xn

i¼1
2ibes

nþ1þaiðAÞ

for a constant c5X1 only depending on s and p0: If 0osp1 we also define b :¼ 2s=p0

and find

Xn

i¼1
2i=p0enþ1þaiðAÞ

 !s

p
Xn

i¼1
2is=p0es

nþ1þaiðAÞp
Xn

i¼1
2ibes

nþ1þaiðAÞ:

Hence for all s40 and b :¼ 2s=p0 we obtain

XN

n¼1
2n=q

Xn

i¼1
2i=p0enþ1þaiðAÞ

 !s

p c5
XN

n¼1
2ns=q

Xn

i¼1
2ibes

nþ1þaiðAÞ

¼ c5
XN

i¼1
2ib
XN

n¼i

2ns=qes
nþ1þaiðAÞ

¼ c5
XN

i¼1
2ib

XNþai

n¼ðaþ1Þi
2ðn�iaÞs=qes

nþ1ðAÞ

p c5
XN

i¼1
2iðb�as=qÞ

Xðaþ1ÞN
n¼1

2ns=qes
nþ1ðAÞ

p c6
Xðaþ1ÞN
n¼1

2ns=qes
nðAÞ

for a constant c640 independent of N and A: &

Proof of Theorem 1.3. Let us fix an e40 with esop0: This definition implies ð1þ
eÞsop0 þ s and hence we can chose an a with ð1þ eÞs=ðs þ p0Þoao1: We define
ak :¼ I2n2aðk�1Þ

m for k ¼ 1;y; n: Then it is easily checked that there exists constants
c1; c240 independent of n with c2n2

npmpc1n2
n: As in the proof of Theorem 1.2 we

also find

e2c1n2nðacoAÞp c32
�ð1=p0þ1=rÞnn�ð1=p0þ1=rÞ sup

ip2n

i1=reiðAÞ

þ c42
�n=p0

Xn

i¼1
2i=p0eIn2aði�1Þmþ1ðAÞ
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for all nX2; all r40 and constants c3; c440 independent of n and A: In particular,
there exist constants c5; c640 independent of n and A with

ec12nðacoAÞp c52
�ð1=p0þ1=rÞn sup

kp2n

k1=rekðAÞ

þ c62
�n=p0n1=p0

Xn

i¼1
2i=p0eIn2aði�1Þ�1mþ1ðAÞ ð12Þ

for all nX2 and all r40: Since the assertion is equivalent to ð2n=p0e2nðacoAÞÞnAcs it

suffices to show

2�n=r sup
kp2n

k1=rekðAÞ

 �

n

A cs ð13Þ

n1=p0
Xn

i¼1
2i=p0eIn2aði�1Þ�1mþ1ðAÞ

 !
n

A cs ð14Þ

for a suitable r40: In order to show (13) recall that ðekðAÞÞkAcq;s implies

ekðAÞ%ðlogðn þ 1ÞÞ�1=q: Hence, we find

2�n=r sup
kp2n

k1=rekðAÞ%2�n=r sup
kp2n

k1=rðlogðn þ 1ÞÞ�1=q
%n�1=q:

Since s4q this implies (13).
Now, let us treat (14): if s41 define b :¼ ð1þ eÞs=p0 and t :¼ 1=ðs � 1Þ: Then, we

observe

Xn

i¼1
2i=p0eIn2aði�1Þ�1mþ1ðAÞ

 !s

¼
Xn

i¼1
ð2is=p0�ib2ibes

In2aði�1Þ�1mþ1ðAÞÞ1=s

 !s

p
Xn

i¼1
ð2is=p0�ibÞt

 !1=tXn

i¼1
2ibes

In2aði�1Þ�1mþ1ðAÞ

p c7
Xn

i¼1
2ibes

In2aði�1Þ�1mþ1ðAÞ

for a constant c7X1 independent of n and A: If 0osp1 we also define b :¼
ð1þ eÞs=p0: Then, we find

Xn

i¼1
2i=p0eIn2aði�1Þ�1mþ1ðAÞ

 !s

p
Xn

i¼1
2is=p0es

In2aði�1Þ�1mþ1ðAÞ

p
Xn

i¼1
2ibes

In2aði�1Þ�1mþ1ðAÞ:
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Hence for all s40 and b :¼ ð1þ eÞs=p0 we obtain

XN

n¼1
n1=p0

Xn

i¼1
2i=p0eIn2aði�1Þ�1mþ1ðAÞ

 !s

p c7
XN

n¼1
ns=p0

Xn

i¼1
2ibes

In2aði�1Þ�1mþ1ðAÞ

¼ c7
XN

i¼1
2ib
XN

n¼i

ns=p0es
In2aði�1Þ�1mþ1ðAÞ

p c8
XN

i¼1
2ib�ia�ias=p0

XN
n¼1

ns=p0es
nðAÞ

p c9
XN
n¼1

ðn1=q�1=senðAÞÞs

for constants c8; c940 independent of N and A: &
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