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Abstract

Let 4 be a subset of a type p Banach space E, 1 <p<2, such that its entropy numbers satisfy
(6n(A)),€lys for some ¢,s€(0,0). We show (e,(acoA)),elr, for the dyadic entropy
numbers of the absolutely convex hull aco 4 of A4, where r is defined by 1/r=1/p' + 1/4.
Furthermore, we show for slowly decreasing entropy numbers that (e,(A4)),€/,, implies
(en(aco A)), €y s for all 0<s< co and ¢ defined by 1/g =1/p’ + 1/s.
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1. Introduction and results

In the following, E always denotes a Banach space and Bg its closed unit ball.
Given a bounded subset 4 = E, we define the entropy numbers of A4 to be

i=1

n
en(A) = inf{s>0 :3xy, ...,x,€A4 such that Ac U (xi—i—sBE)}, neN.

Furthermore, the dyadic entropy numbers are e,(A4) == &y.-1(A4), n=1. It is common
knowledge that if 4 is precompact, so is its absolutely convex hull aco 4. A problem
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which was first considered by Dudley [6] is to quantify this implication in terms of
entropy numbers. In recent years this question has intensively been treated in
different settings (cf. e.g. [1,3,5,7-9,13-15]). Furthermore, the “dual case” which
leads to similar results has been considered in [2.4].

In order to state our results we have to recall some definitions: a Banach space E is
said to be of type p, 1<p<2, if there is a constant C>0 such that for all
X1, ..., X, € E we have the estimate

1| n n 1/p
/ S () dz<C<Z ||x,~||1’> ,
0 ||i=1 i=1

where (r,) shall denote the Rademacher functions, i.e. r,(¢) := sign(sin(2"nt)). The
type p constant 7,(E) is the smallest constant C satisfying the above inequality. If E
is a Banach space of type p and Z,...,Z, are independent E-valued random
variables with finite pth moment the inequality

n n 1/p
> (Zi— EZ)||<4ry(E) <Z EIZ—II”) (1)

i=1 i=1

holds (cf. [10]).

Furthermore, let x = (x;) be a sequence of real numbers. By (s,(x)) we denote the
non-increasing rearrangement of x, that is s,(x) == inf{c¢>0: card{i: |x;|>c} <n}.
For 0<p< oo and 0<g< oo the Lorentz sequence space 7, is then defined by

lpqg ={x: (nl/p’l/qsn(x))e/q},

E

which is equipped with the quasi-norm Hx||M = ||(n‘/1”1/‘1sn(x))\|/q. For basic
properties of these spaces we refer to [11]. As usual, we denote the conjugate of
pe(l, o] byp',ie. 1/p" =1—1/p. For two positive sequences (a,) and (b,) we write
a, < b, if there exists a constant ¢>0 such that a, <cb, for all ne N. Moreover, we
write a, ~ b, if both a,<b, and b,<a,.

Given a Banach space of type p, | <p<2, and a precompact subset 4 of E it was
shown in [3] that

(a(4)), €040 = (en(acod)), €7y (2)

holds for all ¢ge (0, oo) if r is defined by 1/r = 1/p’ + 1/q. For Hilbert spaces, this
implication was also shown in [1,15]. In [13,14] implication (2) was refined by
establishing universal inequalities which imply

en(A)<n V9log(n+ 1) = e,(aco A)<n V1V log(n+ 1) (3)

for all ge(0,0) and all yeR. Furthermore, it was shown in [14] that this is
asymptotical optimal for certain sets A < E whenever E has no type larger than p.
Besides two inequalities (cf. [3]) for subsets 4 of Hilbert spaces and logarithmically
decreasing (¢,(A4)) no sharp results on summability properties of (e,(aco 4)) in terms
of (g,(A4)) are known so far. In particular, it is an open question whether (2) also
holds for secondary indexes s# co. Before we positively answer this question we
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establish a universal inequality which estimates the entropy numbers of aco 4 in
terms of the entropy numbers of A4:

Theorem 1.1. Let E be a Banach space of type pe(1,2] and qe(0, o0). Then there
exists a constant ¢, >0 such that for all n=2, all integers oy < ... <a, and all bounded
symmetric subsets A< E we have

— —_ ! .
eam(aco A)< cym™V171P sup iV (A)
i<min{m!+4/r' o}

n n »\ Up
+ 237,(E)27" <Z (2"/1"2 8%,(/1)) > ;
i=k

k=1

where m = | 2"23°) 27k logz(zk;“k +3)]+2.

Using Theorem 1.1 one can prove various known results on entropy numbers of
convex hulls in type p spaces (cf. the examples below). Moreover, Theorem 1.1 leads
to our main results:

Theorem 1.2. Let E be a Banach space of type pe(1,2]. For qe(0, c0) define r by
1/r=1/p"+1/q. Then for all bounded A< E and all s€ (0, co] we have

(en(A)),€lqs = (en(aco A)), €, 5.

Since (3) is asymptotical optimal whenever E has no type larger than p it is
obvious that Theorem 1.2 cannot be improved.

The following theorem provides a similar implication for subsets 4 with slowly
decreasing entropy numbers.

Theorem 1.3. Let E be a Banach space of type pe(1,2] and se(0, o). Define q by
1/q=1/p"+ 1/s. Then for all bounded subsets A<= E we have

(en(A)),€lqs = (en(acoA)),e€lp.

Again, the estimate of Theorem 1.3 cannot be improved if the type of E is exactly p
(cf. Example 1.5).

As in [3] we say that a subset 4 of a Hilbert space H satisfies Dudley’s entropy
condition if (e,(A4)), €/2,1. Recall, that the results of [3] (cf. Example 1.5) ensure that
aco A satisfies Dudley’s entropy condition provided that (e,(4)), €7, for some r
with 0<r<%. By Theorem 1.3 this condition can be replaced by (e,(A4)),€/2/3,1. As
mentioned above the latter is optimal.

Finally, we provide some examples which demonstrate how recently proved results
can be shown using Theorem 1.1. Recall, that all of these estimates are
asymptotically optimal whenever E has no type larger than p (cf. [14]).
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Example 1.4 (Carl et al. [3], Steinwart [13]). Let £ be a Banach space of type p,
1<p<2, ¢>0 and yeR. Fix an integer a with a>g/p’ and define a; == 2"+ Then
Theorem 1.1 yields implication (3) for all bounded subsets 4 E.

Example 1.5 (Carl et al. [3], Steinwart [13]). Let £ be a Banach space of type p,
1<p<2, AcE be a bounded subset, g€ (0,p’) and yeR. Fix a with ¢/p’ <a<1 and

define oy == | 22" |. Then Theorem 1.1 yields

ea(A) < (log(n + 1)) ""(log(log(n + 2)))

= ey(aco A)<n~ " log(n+ 1)"/7"V4(log(log(n + 2)))".

Example 1.6 (Gao [7], Creutzig and Steinwart [5]). Let E be a Banach space of type

p, 1<p<2, and AcE be a bounded subset. We define oy == 2" or a; == 2%*. Then
in both cases Theorem 1.1 yields

en(A)<(log(n+ 1)) = e,(aco A)<xn~ " log(n + 1).

Example 1.7 (Carl et al. [3], Steinwart [13]). Let £ be a Banach space of type p,
l<p<2, AcE be a bounded subset and ¢ with p'<g<oo. We fix an o with

1 <a<gq/p' and define o == | 22" |. Then the theorem yields

en(A)< (log(n+ 1)) = ¢,(aco 4)xn~/1.

2. Proof of the results
We need the following result which was shown in [13,14].
Theorem 2.1. Let E be a Banach space of type p, 1 <p<2, and qe (0, o0). Then there

exists a constant ¢,>0 such that for all bounded symmetric subsets A< E with
card(4)<n and all k=1 we have

ex(aco A)<ch’1/q’1/”/ sup iMg,(A).

i<min{k!+4/r' n}

In order to prove Theorem 1.1 we also need a refinement of the decomposition
techniques of [3,13] which is stated in the following lemma:

Lemma 2.2. Let AcE, neN and ay, ..., o, be integers. Then there exist a sequence
Py, ..., P, of partitions of A and elements xl@eA, i=1,...,|% k=1,....n, such
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that Py is finer than Py for all k =2, ...n and
|Pr| <oy for all k=1, ....n,

Prex® 4 <2Z g“,(A)) Br for all P‘e?,.
I=k

Proof. The construction is based on a kind of backwards induction. By the
definition of ¢, (A4) there is a minimal 2¢, (A)-net B = {x(ln), ...7x£,',’)} c A of A with
m = |B|<a,. Let #, = {P}, ..., Pi,} be a partition with P} Cxl(") + 2¢,,(A) B for all
i=1,....m.

Now, let us suppose that we already have constructed #; and the corresponding
elements xgk). In particular, we have

Pffcx,(k) + <2Z g“,(A)>BE.
1=k

By the definition of ¢, ,(4) there is a minimal 2¢,  (A4)-net B=
{x(f*l)7 ...,xﬁ,]ffl)}cA of A with cardinality m = |B|<oy_;. Let 4y, ...,4, be a
partition of A4 with Aicx,(k_l) + 2¢y,_,(A)Bg. For 1<i<m we then define
k—1 K
=R
Jj with
x(k)eAi
if there is an index j with x;]() € A;. We denote the collection of these Pff’l’s by 2i_1.
Clearly, 2, is a partition of 4 with |2_|<m<oy_ and 2y is finer than Z;_,. To
check the last assertion we chose an arbitrary xe P<~1. Then there is an index j with
9 e Ay and xe PE. Since [x — x(*V|| <2s,, ,(4) we obtain

k—1 k k k—1
[l = xEV < e = x4 [ = X))

n n
<2 ey (A)+ 2, (A) =2 &(4). O
I=k

I=k—1
Proof of Theorem 1.1. Let £,...,2, be a sequence of partitions according to
Lemma 2.2. Using backwards induction, we find elements y§k> ePJ’F, k=1,...,nand

j=1,...,|%], with
yj(.") = x}”) for j=1,...,|2]
and
W=y for k=1, .n—1, j=1,..., |2

and an index i with P{*' < Pf.
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Now, for 1 <k<n and xe A we define

k
t(x) =

if xePfc . Then, our construction guarantees that the cardinality of
Dy ={tx(x) —tx_1(x):xed}, k=2,...,n

can be estimated by |Di| < || <oy. Of course, for Dy .= {t;(x): xe A} this is also
true. Moreover, for all xe 4 and every k = 2, ..., n we have #;(x), tx_1(x) ePff’1 fora
suitable index j. Hence, we find

1Dl <4 ) e (4) (4)
i=k—1

by the definition of #;_;. Here, we write ||Di|| = sup,.p, |[x|| for short. After
symmetrizing D = Dy (—D;)u{0} we define Cy :=aco Dy =coD) and E, =
> %—> Ck. Our construction guarantees aco{xgn)7 e x‘(;)nl} < Cy + E, and hence C; +
E, is a 2¢, (A)-net of aco 4. In particular, we have

exm(aco A)<en(Cr) + em(Ey) + 2¢,,(A4). (5)
Obviously, we obtain

263, (4) <231, (E)2 7 (2" s, (4)))'1. (6)
Moreover, D; = A4, |D;|<¢; and Theorem 2.1 imply

em(Cl)chm_l/q_l/P/ sup il/qs,-(A). (7)

R /
i<min{m!'+4/7" o}

Now, we estimate e,,(E,) using an argument of [7] (cf. also [5]) which originally goes
back to Maurey (cf. [12]): we write D) = {xgk), ...,xgz)}u{O} for k=2, ...,n. Then
every zi € C can be represented by

d; dy
Zx = Z a"x® where ¥ >0 and Z aM<1.
i1 =1

Let Z; be a random vector with range D) and

P(Ze=x")=al, i=1,..

P(Ze=0)=1->al.

i
i=1

It is trivial to obtain EZ; = z;. For brevity’s sake we write my = 2"% for k =
2, ...,n. Now, we take independent random vectors Zs 1, ..., Za s ooy Zn1s -3 Znm,
such that Z; ;isacopy of Z forallk =2, ...,nandi =1, ...,m. With Y ; = %Zk,,-
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and inequality (1) we then obtain

n n my

1
sz_zm—k;ZkJ

k=2 k=2

n m,

Z (EYki — Yi,)

k=2 i=1

noome 1/p
<4fp(E)< ZHI%—II’”)

E =E

k=2 i=1
n 1/p
—1/p
<4rp<E>< (m, /”IIDk’II)P>
k=2
n n 17 l/p
< 161,(E)27"" (Z <2"/P’ > sx,.(A)> >
k=2 i=k—1
n—1 n p l/p
< 237,(E)2~"" (Z <2WZ sa_,(A)> )
k=1 i=k
=:1&0.

Because the expectation is less than g, there is a realization of the Z; ; for which the
inequality also holds. In particular, the set

n 1 my.
X = {Z 1 dk,ildk,,'ED;(}

= Mk =

my
=

of all possible realizations of random sums »_,_, mikz \ Z i, Where Zy ;e D). are

arbitrary random vectors, form a gy-net of E,. With Stirling’s formula, we find

" D+ g — 1
log, | X|< Z 10%2( g )
k=2 mj

<3 2”: my 10g2<D;‘| + 3)
= M

n k+2
<223 2 log, (2 . 3>.
k=2 2

Therefore, we obtain
n—1 n P Up

em(Ey) <epx|(En) <23 1,(E)27"7 (Z <2k/ﬂ’z sa[(A)> ) ,

=1 i=k

=

which together with (5), (6) and (7) completes the proof. [

Proof of Theorem 1.2. Obviously, we may assume without loss of generality that
A is symmetric. Furthermore, we only have to show the assertion for s< oo.

Let us fix an integer a with a>2q/p’. We define o, =2""% for k=1,...,n.
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Then we obtain

n 2k+2ak
m= 2”+222_k10g2< > +3> +2
k=2

n
— {znﬂ > 27 log, (2R 4 3)J +2
k=2

<22 2 *((a+ 1)k +3) +2
k=2

< c12”

for a suitable constant ¢; >0 independent of n. Analogously, we find a constant
¢, >0 such that m>¢|2". Furthermore, we have

n n p l/p n n
<Z <2k/p'z exi(A)> > < Z 2k/p’z &4, (A)
i—k ‘

k=1 k=1 i=k
n i
= Z Ey; (A) Z 2](/])/
i=1 k=1
n
<0 2 /p,en+l+al(A)

for a constant ¢; >0 only depending on p’. Therefore, Theorem 1.1 yields

e2e,20(aco A) <32 WP H/0n sup Vg, (A) + 277 Z 2 eyt 4 ai(A) (8)

i<2n i=1

for all n=2, all £>0 and constants c¢3,c;>0 independent of n and 4. Since the
assertion is equivalent to (2"/7*"/9ey, »(aco A)), €/, it suffices to show

(2”/"_”/’ sup kl/’ek(A)) € /s, 9)

(2"/‘12 2f/P’en+1+ai(A)> € /s (10)
n

i=1

for a suitable #>0. Let us fix a #>0 with t<g. Then (&(4)), €/, implies

n 1/t
(% > s,Q(A)> € lys (11)

k=1
n

Since n~'/"sup, ., k"' (A) < (LS4, €t (4))"" for all n>1 relation (11) implies
(nV"sup, ., k"/"ex(A)), €ty Since, the latter sequence is decreasing this is
equivalent to (9). Now, let us treat (10): If s>1 we define b :=2s/p’ and 1=
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1/(s — 1). Then, we observe

n s n K
<Z 21/17 en+l+ai(A)> — <Z 21\/11 —ibryib, s+1+al(A))l/x>
i=1

i=1

< (i 2”/‘” lb > Z 21}) n+l+a1

for a constant ¢s>1 only depending on s and p’. If 0 <s< 1 we also define b := 2s/p’
and find

(Z 2[/p/en+1+at > Z 2lS/p f1+l+a1 ) Z Zlb f1+l+a1(A)

i=1 i=1

Hence for all s>0 and b == 2s/p’ we obtain

N n
Z <2n/q Z 2i/p,€n+1+m ) S Z 2/ Z 2% Crti+ai(A

n=1 i=1
=0 Z 2% Z 2m/q€fx+l+ai(A)

N+ai
_c522lb Z 2nms/qen l( )
n=(a+1)i
(a+1)N
< CSZ 2i(b7as/q) Z 2r1s/qen+l(A)

n=1

(a+1)N

<o Z 20163 (4

for a constant ¢s >0 independent of N and 4. O

Proof of Theorem 1.3. Let us fix an ¢>0 with es<p'. This definition implies (1 +
g)s<p' +s and hence we can chose an a with (1 +¢)s/(s +p')<a<1. We define
o = [ 22" | for k =1, ...,n. Then it is easily checked that there exists constants

¢1, ¢2>0 independent of n with ¢;n2" <m<c1n2". As in the proof of Theorem 1.2 we
also find

62“”2”(300 A)$ 6327(l/p/+1/r)nn7(l/p'+l/r) sup il/’,S,'(A)
<2t

+ 642_”/1’, Z 2[/p,€Ln2a([7l)J+] (A)
=1
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for all n=2, all r>0 and constants ¢3, ¢4 >0 independent of n and A. In particular,
there exist constants cs, ¢ >0 independent of n and A4 with

ecﬂ”(ﬁCO A) < c52_(1/P/+1/l‘)n sup kl/rgk<A)
k<2n

+ e PN 2 e i1 (41 (A) (12)

i=1

for all n>2 and all > 0. Since the assertion is equivalent to (2"/” ey (aco 4)), €/, it
suffices to show

(2”/" sup kl/"gk(A)> € /s (13)
k<2 n

n
<n1/p’ Z 21/p,eLn2(1(il)lJ+l(A)> €l (14)
i=1

I n

for a suitable r>0. In order to show (13) recall that (ex(A)), €/, implies
ex(A) < (log(n+ 1)), Hence, we find

27" sup kMer(A)<27"" sup k' (log(n+ 1))V 1<gn14.
k$2“ k<2"

Since s> ¢ this implies (13).
Now, let us treat (14): if s>1 define b := (1 +¢)s/p’ and ¢ .= 1/(s — 1). Then, we
observe

n S n K
<Z 21/]7 eana(i—l)—l |41 (A)) — (Z (213‘/}7 7lb21bein2u(i—l)—l 141 (A))]/S>
i=1

i=1

" e,
< (Z (2is/p’ib)t> Z 2z‘besln2u([7l)7lJ+l(A)

i=1 i=1
n
ib
<07 E 2! eT_nZ““*”*‘J-o—l (A)
i=1

for a constant ¢;>1 independent of n and A. If 0<s<1 we also define b :=
(1 +¢€)s/p’. Then, we find

n ' n
(Z zi/p/eanauleH(A)) s Z 24 esLHZ““*”*‘JH(A)

i=1 i=1

< Z 2fb€i,,2a<f—n>—lj+1(‘4)'
i=1



52 L Steinwart | Journal of Approximation Theory 128 (2004) 42-52

Hence for all s>0 and b == (1 + ¢)s/p’ we obtain

N n s N n
Z n'/? Z 2ilp e pai-n-1y41(A4) | < e Z P Z 2’bein2u(,,1),1J+I(A)
n=1 i=1 n=1 i=1

N N

_ ib s/p’ s

=1 20D e i (4)
i=1 n=i

< cg Z Zzb—la—ms/p Z ns/p e;(A)
i=1 n=1

for constants cg, cg >0 independent of N and 4. [
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